

Seminar notes for L6 8 Linear Relations Graphing Package


## The Coordinate Grid

The x and y axis divide the coordinate grid into 4 quadrants, numbered counter clockwise from the top right.

Ex. Label the 4 quadrants.


## 

## Plotting Coordinates

Each ordered pair (x, y) has 2 parts to locate a point.

- The first part, $x$, describes the horizontal value of the coordinate.
- The second part, y , describes the vertical value of the coordinate.


|  |  |  |  |  |  |  |  | \% | 1 | T |  |  |  |  |  | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | 4 | , |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\square$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | - |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | $\square$ |

## 

## Graphing Using Tables ( $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ )

A linear equation, when graphed, will result in a straight line.

- Choose $x$-values, starting with zero. If it works evenly go up by the LCD of the equation.
- Solve for y and fill in the coordinate ( $\mathrm{x}, \mathrm{y}$ ).
- Plot the points, draw the line (if graphed over the real numbers).



Try Make a table of values using $\mathrm{x}=0,1,2,3$ to graph the equation $y=3 x-6$.

| $x$ |  | $y$ | $(x, y)$ |
| :--- | :--- | :--- | :--- |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |



## 童

## $X$ and $Y$ Intercepts

The x -intercept happens when $\mathrm{y}=0 .(\mathrm{x}, 0)$
The $y$-intercept happens when $x=0 .(0, y)$

Ex.
Find the x and y intercepts of the following line.


## 

## Graphing Using Intercepts

A linear equation, when graphed, will result in a straight line.

- Choose $\mathrm{x}=0$ ( y -intercept). Solve for y and fill in the coordinate ( $\mathrm{x}, \mathrm{y}$ ).
- Choose $\mathrm{y}=0$ ( x -intercept). Solve for x and fill in the coordinate ( $\mathrm{x}, \mathrm{y}$ ).
- Plot the points, draw the line (if graphed over the real numbers).

Build table. Ex. Graph the following linear equation: $2 \mathrm{x}-3 \mathrm{y}=12$.

| Choose $\mathrm{x}=0$. | $2 x-3 y=12$ | $y$ | ( $x, y$ ) |
| :---: | :---: | :---: | :---: |
| 0 | $\begin{gathered} 2()-3 y=12 \\ \frac{y}{-3} \\ \hline-3 \end{gathered}$ | -4 | $(0,-4)$ |
| 6 | $\begin{array}{cc} 2 x-3(~)=12 \\ \frac{y}{2} & 2 \end{array}$ | 0 | $(6,0)$ |




## Try

Make a table of values using $\mathrm{x}=0,1,2,3$ to graph the equation $\frac{1}{2} x+y=2$.

| $x$ |  | $y$ | $(x, y)$ |
| :--- | :--- | :--- | :--- |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |




## Types of Slope

There are four types of slope.

- Positive - a line that rises to the right.
- Negative - a line that falls to the right.
- Undefined - a vertical line.
- Zero - a horizontal line


Define the 4 types of slope.


Hi!
I'm Slope Man.

## Finding the Slope Given a Graph

The slope of a line is the measure of how steep a line is.

- Choose 2 coordinates on the line.
- Calculate the run and rise.


## Check

Slope Man.

- Write the slope in the form of rise $/$ run .

Ex.
Find the slope of the given line.

$$
\begin{aligned}
& m=\frac{\text { rise }}{r u n} \\
& m=\frac{-6}{+8}=\frac{-3}{4}
\end{aligned}
$$

Reduce the
fraction.



## Finding the Slope Given Two Points

The slope of a line is the measure of how steep a line is.

- Write the slope formula.
- Substitute $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ into the formula.
- Calculate and write the slope as a reduced fraction.

Ex.
Find the slope of the line that passes
through the points $(4,-5) \&(-2,3)$.

$$
\begin{aligned}
& \begin{array}{c}
\text { Substitute into } \\
\text { the formula. }
\end{array} \\
& \qquad \begin{array}{l}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m=\frac{-}{-}=\frac{8}{-6}=\frac{-4}{3}
\end{array},=\frac{-}{-}
\end{aligned}
$$



## Graphing a Line Given a Point and a Slope

Graphing a line from a point and a slope is like giving directions to someone, "From here, do these steps."

- Graph the given point.
- Break the slope into its vertical and horizontal components to get to the next points.
- Draw the line.

Ex. Draw the line that passes through $(4,-2)$ with a slope of $2 / 5$.

$$
m=\frac{2}{5}
$$

Use the slope to locate the next point.



## Rearranging Equations into $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

One way of finding the slope without getting points or a graph of a line is to change the equation into $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form.

- Move the x term and the constant to the right side
- Divide both sides by the coefficient of $y$.

Change to slopeintercept form.

Ex.
Given the equation, $2 x+3 y=6$, rearrange the equation into $y=m x+b$ form.


## Graphing Equations Using $\mathbf{y}=\mathbf{m x}+\mathbf{b}$

To graph a line you need two things, a starting point and a slope.

- Write the equation in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form and identify the y -intercept (b) and the slope ( m ).
- Plot the point and use the slope to get the next point ( $\mathrm{m}=$ rise $/$ run ).


Ex.
Given the equation, $4 x+6 y=12$, graph the line without using a table of values.



Try
Use the linear relation graphed below to determine the following values:



Jaiden rents a hall to host a party. Use the graph below to extrapolate or interpolate the following:


| Find the cost of the <br> hall if no people <br> attend the party. | Find the cost if 100 <br> people attend the <br> party. | Find the cost if 50 <br> people attend the <br> party. | Find the number of <br> people you could <br> host if you had $\$ 400$. |
| :--- | :--- | :--- | :--- |
|  |  |  |  |

