SEMINAR NOTES

Learning Guide 10

Multiplying a Polynomial by a Constant

When multiplying a polynomial by a constant distribute the number in front of the brackets to each term in the brackets by multiplication.

Ex.

Determine the following product.

$$4(-2x+3y-5)$$

Try: Multiply the following:

$$(-3)(-2xy)$$

$$(-7x)(6)$$

Find each product.

$$5(2x^2 + 4x - 2)$$

$$3(x^2 - 2y)$$

$$(x^2 + x - 5)(-2)$$

Dividing a Polynomial by a Constant

When dividing a polynomial by a constant make sure to divide each term in the numerator by the number in the denominator.

Ex.

Determine the following quotient.

$$\frac{-12x+18y-6}{6}$$

Try: Divide the following.

Find each quotient.

$$\frac{24x^2 - 16}{8}$$

$$\frac{-16x^2 - 8x + 4}{-4}$$

$$\frac{15x^2 - 10x + 5}{5}$$

Writing Algebra from Models

We can use algebra to represent a physical model.

- · Write the area formula
- · Substitute the dimensions.

Ex.

Write an algebraic expression to describe the area of the following rectangle.

$$3x^2 - 2x + 4$$

$$A = l \cdot w$$

5

Multiplying a Polynomial by a Monomial

When multiplying a polynomial by a monomial distribute the term in front of the brackets to each term in the brackets by multiplication.

Ex.

Determine the following product.

$$2x(3x+4)$$

Try: Multiply.

$$(5y)(-3x)$$

$$(-3x)(-2xy)$$

$$(-7x)(6y^2)$$

. Find each product.

$$3x(x^2 - 2x + 4)$$

$$2m(3x^2 - 2y)$$

$$(4x^2 + 2x - 9)(-3x)$$

Dividing a Polynomial by a Monomial

When dividing a polynomial by a monomial make sure to divide each term in the numerator by the number in the denominator.

Ex.

Determine the following quotient.

$$\frac{12x^2 + 8x}{2x}$$

Try: Divide.

$$\frac{14x^2}{7x}$$

$$\frac{24x^3}{-4x^2}$$

$$-\frac{16x^2y}{-2y}$$

Find each quotient.

$$\frac{24x^3 + 12x^2 - 16x}{4x}$$

$$\frac{20x^3 - 8x^2 + 4x}{-4x}$$

Area with Algebra

We can use polynomial operations to find the area of figures with variable dimensions.

- Choose the appropriate formula for the figure.
- Substitute the dimensions into the formula.
- · Multiply through the brackets.

Ex.

Write the multiplication sentence to describe the area of the rectangles below.

	5 <i>x</i>	3
3 <i>x</i>		

$$A = l \cdot w$$

Try: Find the area of each rectangle and the total of the two rectangles.

	4x	5
3x		

