

SEMINAR NOTESLearning Guide 11

Inverse Operations

Solving equations involves undoing steps by using the inverse operation.

- First build the equation moving to the right.
- Working to the left, use the inverse (or opposite) operation to solve the equation.

Ex. 1

Solve the following equation.

$$3x + 5 = 14$$

Build equation

2x = 10

Build equation

1.
$$5x = 20$$

2.
$$-2x = 16.8$$

3.
$$\frac{x}{7} = -2$$

4.
$$5x + 1 = -14$$

5.
$$\frac{x}{2}$$
 - 5 = 1

Solving Basic Equations To move numbers across the equal sign use the opposite operation. Identify the number you want to move. Decide on the opposite operation (+/-, x/÷). Perform that operation to both sides with that number.

Ex.

Solve the following equation.

x + 5 = 11

Ex.

Solve the following equation.

$$x-5 = 11$$

$$x + 2 = 8$$

$$5 + m = 1$$

$$d - 1 = 6$$

Solving Basic Equations

To move numbers across the equal sign use the opposite operation.

- Identify the number you want to move.
- Decide on the opposite operation $(+/-, x/\div)$.
- Perform that operation to both sides with that number.

Ex.

Solve the following equation.

2x = 12

Ex.

Solve the following equation.

$$\frac{x}{2} = 12$$

$$\frac{x}{4} = 3$$

$$-3x = 12$$

E

Equations With Two Steps

Does it matter which number is moved first?

- To avoid fractions it is usually easier to work with addition or subtraction first.
- Move the number added (or subtracted) by doing the opposite operation.
- Move the number multiplied (or divided) by doing the opposite operation.

Ex.

Solve the following equation.

2x + 5 = 11

Ex.

Solve the following equation.

$$\frac{x}{3} - 4 = -2$$

$$5x - 1 = 14$$

$$\frac{x}{4} + 3 = 5$$

Your goal is to solve the equation in the form x = #.

- Move variables to the same side.
- Move the constants to the opposite side.
- Divide out the coefficient.

Ex.

Solve the following equation.

$$6x - 2 = 3x - 7$$

$$3x - 1 = x + 14$$

$$3 - 4x = 5 + 7x$$

P. cu

Equations With Parentheses

Multiply through the parentheses first.

- Multiply through the brackets.
- Move variables to the same side.
- Move the constants to the opposite side.
- Divide out the coefficient.

Ex.

Solve the following equation.

$$4(x-3) = 2(x+1)$$

$$2(x-5) = -3(2x+1)$$

$$-2(3x-1) = 3(4x+1)$$

Equations With Fractions

Can you cross multiply or do you need a LCD?

- If two terms then cross multiply, if more than two then multiply by a LCD.
- Move variables to the same side.
- Move the constants to the opposite side.
- Divide out the coefficient.

Ex.

Solve the following equation.

$$\frac{(3)}{2} = \frac{(x-3)}{3x}$$

$$\frac{2x}{5} = \frac{-3}{4}$$

$$\frac{3}{4} = \frac{x-2}{5x}$$

Equations With Fractions

Can you cross multiply or do you need a LCD?

- If two terms then cross multiply, if more than two then multiply by a LCD.
- Move variables to the same side.
- Move the constants to the opposite side.
- Divide out the coefficient.

Ex.

Solve the following equation.

$$\frac{2x}{3} + \frac{1}{2} = \frac{3}{4}$$

$$\frac{x}{2} + \frac{2}{3} = \frac{3}{2}$$

$$\frac{5x}{6} + \frac{3}{4} = \frac{x}{6} + \frac{1}{4}$$

$$\frac{3x}{4} - 2 = \frac{x}{3} + 1$$

Practice:

The perimeter of the rectangle below is 100.6

- a) Write an equation that can be used to determine x.
- b) Solve the equation.