SEMINAR NOTES Learning Guide 9

What is a Polynomials?

A polynomial is a big concept in algebra. First we have to understand what terms are. Terms are mathematical expressions made up of two parts.

Try: What are the coefficient, variable and constant in each.
a) $6 x^{2}+3 x-5$
b) $-b^{2}-8 b+1$
c) $3 a^{3} b^{2}+2 c$

What is a Polynomials?

A polynomial is an expression consisting of variables and coefficients, that have non-negative integer exponents of variables.
An example of a polynomial , x , is $x^{2}+4 x-5$.
Ex. A monomial is a one-termed polynomial.

$$
3 x, 2 x^{2} \text { and }-7 x y^{2}
$$

Ex. A binomial is a two-termed polynomial.

$$
3 x+5 \text { and } x^{2}+5 y
$$

Ex. A trinomial is a three-termed polynomial.

$$
x^{2}+2 x+3 \text { and } 6+3 y-7 y^{2}
$$

Try: $\quad 3 x+5 \quad 3 \sqrt{n}-2 \quad \frac{1}{2} b+5 \quad \frac{1}{a}+2 a-1$

Classifying Polynomials by Number of Terms

Polynomials can be classified by the number of terms it has.
Ex. A monomial is a one-termed polynomial.

$3 x, 2 x^{2}$ and $-7 x y^{2} \quad$are all monomials.
Ex. A binomial is a two-termed polynomial.
$3 x+5$ and $x^{2}+5 y \quad$are both binomials.
Ex. A trinomial is a three-termed polynomial.
$x^{2}+2 x+3$ and $6+3 y-7 y^{2} \quad$are both trinomials.

Try:

Classify each of the following by type: (Monomial, binomial, trinomial)

| Specific Names for Polynomials | |
| :---: | :---: | :---: |
| + | monomial \quad (1) |
| $++\square$ | binomial \quad (2) |
| $+\square+\square$ | trinomial \quad (3) |
| $+\square+\square+\square+\cdots$ | polynomial (many) |

$2 x+3$
$x^{2}-2 x+1$
$4 x^{2}$
$5-2 d$

Degree of a Monomial

The degree of a monomial is the sum of the exponents in the term.

Ex. What is the degree of the following monomial?

The degree of the monomial $4 x^{2} y^{3}$ is 5 .

Try: Identify the degree of the following:
$4 x^{2}-3 x+1$
$5 x^{3}+4 x$
$3+4 x^{2}+2 x$

Degree of a Polynomial

The degree of a polynomial is the greatest degree in any one of the terms in the polynomial. Do not add the degrees between the terms.

- Find the degree of each term
- Take the highest degree of the terms.

Ex.
What is the degree of the following polynomial?

$$
4 x^{2} y^{3}+2 x^{4} y^{2}+5 x^{2} y^{2}
$$

The degree of the polynomial $4 x^{2} y^{3}+2 x^{4} y^{2}+5 x^{2} y^{2}$ is 6 .

Try: $\quad 2 x^{2} y^{4}+4 x y^{3}-5 x^{4} y^{5}$

Modelling Polynomials Using Algebra Tiles

One way to understand algebra is to use tiles.

- Yellow is used to represent positive tiles.
- Red is used to represent negative tiles.

Try: Use tiles to represent the following:

$$
2 x^{2}+4 x-1 \quad-x^{2}-2 x+3
$$

Using Tiles to Add Like Terms

Represent each term using the algebra tiles.

- Look for "like tiles" and gather together.
- Cancel opposites and add the remainder together.

Ex.
Use tiles to add the like terms of the following expression:

$$
2 x^{2}-x+3-x^{2}-3 x-1
$$

Try: Write the polynomial expression for each under the tiles.

Adding Like Terms

Add only "like terms" (same variable and exponent).

- Add the coefficients.
- Rewrite the variables.

Ex.

Add the like terms of the following expression:

I told you to add the like terms!

Try: simplify each polynomial.

$$
5-x+2 x^{2}+4-2 x \quad 3 x^{2}-2 y-2 x^{2}+y \quad 2 x y-2 x^{2}-2 y x+2 x^{2}
$$

Adding Polynomials

Watch for addition sign before a bracket.

- Ignore the parentheses if there is addition between them.
- Use addition rules to combine like terms.

Ex. Simplify the following expression.

$$
\left(3 x^{2}+2 x-5\right)+\left(2 x^{2}-3 x+4\right)
$$

Try: Add the following polynomials.

$$
\begin{array}{ll}
(6 x+1)+(2 x-5) & (-2 x+4)+(7 x-2) \\
\left(2 x^{2}+5 x-7\right)+\left(-3 x^{2}-4 x+3\right) & \left(-x^{2}-3 x+2\right)+\left(-2 x^{2}-x+5\right)+(-3 x-7) \\
\left(-4 x^{2}-5 x+7\right)+\left(2 x^{2}+3 x-8\right) & \left(3 x^{2}+6 x-1\right)+\left(-2 x^{2}-6 x+2\right)
\end{array}
$$

Subtracting Polynomials

Watch for subtraction sign before a bracket.

- Change the subtraction sign to addition.
- Change the sign of every sign in the bracket to its opposite.
- Use addition rules to combine like terms.

Ex.
Simplify the following expression.

$$
\left(4 x^{2}+3 x-5\right)-\left(6 x^{2}-2 x+7\right)
$$

Try: Subtract the following polynomials.

$$
\begin{array}{ll}
(6 x+1)-(2 x-5) & (-2 x+4)-(7 x-2) \\
\left(2 x^{2}+5 x-7\right)-\left(-3 x^{2}-4 x+3\right) & \left(-x^{2}-3 x+2\right)-\left(-2 x^{2}-x+5\right)-(-3 x-7)
\end{array}
$$

Finding a Side Given the Perimeter

You need to subtract the known sides from the perimeter.

Ex.
Find the missing dimension
given the perimeter.

$$
P=8 x+6
$$

Try: Find the perimeter of each shape below:.

