Linear Functions
Name

WORKSHEET #1 – Slopes of Parallel & Perpendicular Lines

What is the slope of the following equations?(Hint: Translate into Slope-Intercept Form to ID Slope)1) y = -6x - 24) 7x - 2y = 35) 2y + 5x = 2

- 2) x + 4y = 12
- 3) $y = 2 \frac{1}{3x}$

<u>PARALLEL LINES:</u> <u>PERPENDICULAR LINES</u>	EQUATION	SLOPE	PARALLEL SLOPE	PERPENDICULAR SLOPE
	$\mathbf{y} = -6\mathbf{x} - 2$			
	$\mathbf{x} + 4\mathbf{y} = 12$			
	$y = 2 - \frac{1}{3}x$			
	7x - 2y = 3			
	2y + 5x = 2			

When questions ask you about parallel or perpendicular lines, you need to focus only on the SLOPE!

1.
$$y = -5x + 3$$

2. $y = \frac{2}{3}x + 7$
3. $3x + 4y = 9$
4. $-x + 2y = -10$

Write an equation in slope intercept form of a PARALLEL line to the graph of the given linear function and passes through the given point.

5.
$$y = -4x + 8$$
, (1, 3)
6. $y = 6x - 4$, (2, 3)

7.
$$y = \frac{2}{3}x - 3$$
, (-3, 1)
8. $y = 3x + 4$, (5, 6)

13.
$$-3x + y = 8$$
; (-1, 5)
14. $y = \frac{-1}{2}x + 3$; (-4, 7)

15.
$$y = \frac{1}{4}x + 3$$
; (8, -6)
16. $y = \frac{5}{2}x - 1$; (-2, 8)

The slope of perpendicular lines are: _______.Write a slope that is PERPENDICULAR to each equation.1. y = 3x + 42. 6x + 3y = 13. $y = \frac{-4}{3}x + 11$ 4. y - 7x = 0

Write an equation in slope intercept form of the line that is PERPENDICULAR to the graph of the given equation and passes through the given point.

5. $y = \frac{1}{3}x - 2$, (-4, 2) 6. y = 2x + 6, (0, 0)

7. 2x + 3y = 2, (3, 0) 8. y = -2x + 5, (2, -3)

Write an equation for the line that is PERPENDICULAR to the given line and contains the given point.

11. $y = \frac{4}{3}x - 7$; (7, 2) 12. y = x - 2; (3, -1)

13.
$$-3x + y = 8$$
; (-1, 5)
14. $y = \frac{-1}{2}x + 3$; (-4, 7)

15.
$$y = \frac{1}{4}x + 3$$
; (8, -6)
16. $y = \frac{5}{2}x - 1$; (-2, 8)

Determine whether the graphs of the equations are parallel, perpendicular, or neither. 17. y = 3x + 2 and $y = \frac{1}{3}x + 5$ 18. y = 8 + 5x and y = 5x - 6

19.
$$y = 8 + 3x$$
 and $y = -\frac{1}{3}x - 7$
20. $y = \frac{2}{3}x + \frac{1}{2}$ and $y = -\frac{2}{3}x - \frac{3}{2}$

21.
$$y = \frac{2}{3}x + 1$$

 $y = -\frac{3}{2}x + 2$

22. $y = \frac{1}{5}x + 2$

 $y = 5x + 1$

23. $y = -4x + 3$
 $4y = x - 5$

24.
$$y = -\frac{3}{4}x + 5$$
25. $y = \frac{1}{2} + \frac{1}{3}x$ 26. $2y = 8 - 2x$ $4y + 3x = -3$ $2x + y = 5$ $3x + 3y = 9$

Questions for Creating Parallel and Perpendicular Lines:

- 1) You must know the <u>original slope</u> of the line you are comparing to.
- 2) You must identify if you want the parallel or perpendicular slope of the original.
- 3) You must know or be able to determine at least one point on this new line
- 4) Create the slope intercept form equation of a line with the parallel or perpendicular slope and point on the line (y = mx + b)

Example 1: Write the equation of the line that passes through the point (-1, -2) and is parallel to the graph of y = -3x - 2.

Example 2: Write the equation of the line that passes through (4, -2) and is parallel to $y = \frac{1}{2}x - 7$.

Example 3: Write the equation of the line that passes through the point (-3, -2) and is perpendicular to the graph of x + 4y = 12.

Example 4: Write the equation of the line that is perpendicular to the graph of $y = -\frac{1}{3}x + 2$ and passes through the *x* – intercept of that line.

Example 5: Write the equation of the line that passes through the point (4, -1) and is perpendicular to the graph of 7x - 2y = 3.

Example 6: Write the equation of the line that is parallel to 2y + 5x = 2 and passes through (0, 6).

Example 7: Write the equation of the line that is parallel to -4y = 8x - 6 and passes through (-4, 3).