

## Pre-Calculus 12

## Final Exam M

Mock Exam
Frances Kelsey Secondary

| Multiple <br> Choice <br> Score <br> $+$Free <br> Response <br> Score <br> $\frac{\square}{35}$ <br> FINAL <br> SCORE |
| :--- |

## Student Instructions

1. Put your student number and name in the allotted spaces above.
2. Ensure that in addition to this examination booklet, you have an Examination Response Form.
3. Disqualification from the examinaation will result if you bring books, paper, notes or unauthorized electronic devices into the examination room.
4. When you open this booklet, check the number of the pages to ensure they are number in sequence from page one to the last page..
5. At the end of the examination, place your Response Form inside the front cover of this booklet and return the booklet and your Response Form to the supervisor.

## Pre-Calculus 12 Final Examination

|  |  |  | Value | Suggested <br> Time |
| :--- | :---: | :--- | :---: | :---: |
| This Examination Consists of Two Parts. |  |  |  |  |
| Part A: | 25 multiple-Choice questions |  | 25 | 45 |
| Part B: | 7 Written response questions |  | 35 | 45 |
|  |  | Total | $\mathbf{6 0}$ | $\mathbf{9 0}$ Minutes |

## Part A Multiple Choice All questions in this part are worth 1 marks each. (Total 25 marks) ***USE SCANTRON CARD

1. The point $(9,-12)$ is on the graph of a function. What will the coordinates of this point be after all of the following transformations.

- horizontal expansion by a factor of $\mathbf{3}$
$\bigcirc$ reflection in the $\boldsymbol{x}$-axis
- vertical translation of $\mathbf{5}$ downward
A $(-27,7)$
B $(3,7)$
C $(27,7)$
D $(-3,7)$

2. Determine an equation of the inverse of $f(x)=2 x+6$.
A $\quad f^{-1}(x)=\frac{1}{2} x-3$
B $\quad f^{-1}(x)=\frac{1}{2 x+6}$
C $f^{-1}(x)=-2 x-6$
D $\quad f^{-1}(x)=\frac{1}{2} x+\frac{1}{6}$
3. Which value is NOT a zero of $P(x)=x^{3}+3 x^{2}-x-3$ ?
A 1
B -1
C 3
D $\quad-3$
4. Determine the value of $\boldsymbol{k}$ if the remainder is $\mathbf{2}$ for $\left(4 x^{3}-k x^{2}+2 x+1\right) \div(x-1)$
A 5
B 9
C - 7
D 1

## Part A Multiple Choice All questions in this part are worth 1 marks each. (Total 22 marks)

5. If $a, b, c, d$, and $g$ are real numbers and $a>0$, which equation could be represented by the curve below?

A $y=a x^{4}+b x^{3}+c x+g$
B $y=a x^{2}+b x+c x+d$
C $y=a x+b$
D $y=a x^{3}+b x^{2}+c x+d$
6. Solve for $\mathrm{x}:\left(\frac{1}{9}\right)^{x}=27^{2-x}$.
A -6
B $\frac{6}{5}$
C 2
D 6
7. Determine an equivalent expression for $\log a+2 \log b-3 \log c$
A $\log \frac{a b^{2}}{c^{3}}$
B $\quad \log \frac{a}{b^{2} c^{3}}$
C $\log \frac{a}{6 b c}$
D $\log \frac{2 a b}{3 c}$
8. Give the domain of $f(x)=\log _{7}(x+6)+12$
A $x>6$
B $x>-6$
C $x>12$
D $x>-12$

## Part A Multiple Choice all questions in this part are worth 1 marks each. (Total 22 marks)

9. The $4^{\text {th }}$ term of a geometric sequence is $\mathbf{2 5 0}$ and the $\mathbf{7}^{\text {th }}$ term is $\mathbf{- 1 6}$. Determine the $\mathbf{1 0}^{\text {th }}$ term.
A $-\frac{2}{5}$
B $\frac{2}{5}$
C $-\frac{128}{125}$
D $\frac{128}{125}$
10. Evaluate

$$
\sum_{k=3}^{12} 32\left(-\frac{1}{2}\right)^{k}
$$

A -2.66
B -21.31
C 2.67
D 21.35
11. If $f(x)=x^{2}-16$ and $g(x)=x+4$, find the domain of $\frac{f}{g}(x)$.
A $x \in R, x \neq 0$
B $x \in R, x \neq 4$
C $x \in R, x \neq-4$
D $x \in R$
12. If $h(x)=x^{2}$ and $g(x)=3 x^{2}-1$ find the equation for $(h g)(x)$.
A $\left(3 x^{2}-1\right)^{2}$
B $3 x^{4}-1$
C $3 x^{4}-x^{2}$
D $9 x^{4}+1$

## Part A Multiple Choice all questions in this part are worth 1 marks each. (Total 22 marks)

13. Find the exact value of $\tan \frac{5 \pi}{3}$.
A $-\sqrt{3}$
B $\frac{1}{\sqrt{3}}$
C $-\frac{1}{\sqrt{3}}$
D $\sqrt{3}$
14. If $\sin A=\frac{-2}{5}$ and $\cos >0$ find the exact value(s) of $\cot A$.
A $-\frac{2}{\sqrt{21}}$
B $\frac{2}{\sqrt{21}}$
C $\frac{\sqrt{21}}{2}$
D $-\frac{\sqrt{21}}{2}$
15. A circle has a radius of 12 cm . If the central angle is $45^{\circ}$, determine the length of the arc?
A $2 \pi$
B $3 \pi$
C ${ }_{4 \pi}$
D $6 \pi$

## Part A Multiple Choice All questions in this part are worth 1 marks each. (Total 22 marks)

16. Which function is NOT an equation for the following graph.


A $y=4 \operatorname{Cos} \frac{\pi}{4}(x-4)+2 \quad \mathbf{B} \quad y=4 \operatorname{Sin} \frac{\pi}{4}(x+2)+2 \quad$ C $\quad y=-4 \operatorname{Sin} \frac{\pi}{4}(x-6)+2 \quad$ D $\quad y=-4 \operatorname{Cos} \frac{\pi}{4} x+2$
17. Which expression is equivalent to $\sin (\pi+2 x)$ ?
A $2 \cos ^{2} x-1$
B $\quad 1-2 \cos ^{2} x$
C $2 \sin x \cos x$
D $-2 \sin x \cos x$
18. Write the expression $\frac{2 \tan (8 x)}{1-\tan ^{2}(8 x)}$ ?
A $\tan (16 x)$
B $2 \tan (16 x)$
C $2 \tan (8 x)$
D $\tan (8 x)$

## Part A Multiple Choice All questions in this part are worth 1 marks each. (Total 22 marks)

19. Solve $2 \sin x-2=0$ exactly, $0^{\circ} \leq x<360^{\circ}$.
A $0^{\circ}$
B $0^{\circ}, 180^{\circ}$
C $90^{\circ}, 270^{\circ}$
D $90^{\circ}$
20. Solve $\sqrt{3} \cos x \tan x+\cos x=0$ exactly, $0 \leq x<2 \pi$.
A $\frac{\pi}{6}, \frac{7 \pi}{6}$
B $\frac{5 \pi}{6}, \frac{11 \pi}{6}$
C $\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{\pi}{2}, \frac{3 \pi}{2}$
D $\frac{5 \pi}{6}, \frac{11 \pi}{6}, \frac{\pi}{2}, \frac{3 \pi}{2}$
21. If $\sin A=\frac{3}{5}$ and angle $A$ terminates in quadrant $I$, find the exact value of $\cos 2 A$.
A $\frac{-7}{25}$
B $\frac{-4}{25}$
C $\frac{4}{25}$
D $\frac{7}{25}$
22. Write the expression $\frac{\csc ^{2} \theta}{\sec ^{2} \theta}$ as a single term.
A $\cos ^{2} \theta$
B $\cot ^{2} \theta$
C $\tan ^{2} \theta$
D $\sin ^{2} \theta$

## Part A Multiple Choice all questions in this part are worth 1 marks each. (Total 22 marks)

23. What is the range of the graph $y=\cos x$.
A $-1 \leq y \leq 1$
B $0 \leq y \leq 2 \pi$
C $-2 \pi \leq y \leq 2 \pi$
D $y \in R$
24. Write as a single trigonometric function: $6-12 \sin ^{2}(4 x)$.
A $6 \cos 4 x$
B
$12 \cos 8 x$
C $6 \cos 8 x$
D $2 \cos 4 x$
25. How many solution(s) are there in the interval $0 \leq x<\pi$ for the equation $\cos x=2$ ?
A 0
B 1
C 2
D 3

## Part B Written Response Please show all working for full credit. All questions in this part are worth 5 marks each.

1. The graph of $y=f(x)$ is shown below by the line.
a) Graph $y+3=-f\left(\frac{1}{2} x-5\right)$ on the same grid.

b) Graph $y=f^{-1}(x)$ on the grid provided.


Part B Written Response $\begin{aligned} & \text { Please show all working for full credit. All questions in this part are worth } 5 \\ & \text { marks each. }\end{aligned}$
2. A radioactive substance has a half-life of 17 days. How long will it take for 300 g of this substance to decay to $\mathbf{9 5} \mathbf{g}$ ?
(Solve algebraically using logarithms. Answer accurate to 2 decimal places)

## Part B Written Response <br> Please show all working for full credit. All questions in this part are worth 5 marks each.

## 3. Write a polynomial equation for the given graph.



## Part B Written Response $\begin{aligned} & \text { Please show all working for full credit. All questions in this part are worth } 5 \\ & \text { marks each }\end{aligned}$ marks each.

4. Given: series $2+8+14+20+26+32$
a) Write in sigma notation.
b) Find its sum.
5. 

| ANSWER: |
| :--- |
| a) |
| b) |

Part B Written Response $\begin{aligned} & \text { Please show all working for full credit. All questions in this part are worth } 5 \\ & \text { marks each. }\end{aligned}$
5. A Ferris wheel has a radius of $\mathbf{1 0} \mathrm{m}$ and its $\mathbf{2 ~ m}$ above the ground. It rotates once every $\mathbf{4 0}$ seconds. If Jet gets on this ride at the lowest point determine the height in metres, when Jet has been on the ride for $\mathbf{8}$ seconds.

## Part B Written Response $\begin{aligned} & \text { Please show all working for full credit. All questions in this part are worth } 5 \\ & \text { marks each. }\end{aligned}$

6. a) Solve the following equation algebraically giving exact values where possible.

$$
2 \sin ^{2} x+5 \sin x-3=0,0 \leq x<2 \pi
$$


b) Find the solution to the above equation in over the real numbers.
$6 b$.

## Part B Written Response $\begin{gathered}\text { Please show all working for full credit. All questions in this part are worth } 5\end{gathered}$ marks each.

## 7. Prove the identity:

$$
\sec x+\tan x=\frac{\cos x}{1-\sin x}
$$

| LEFT SIDE | RIGHT SIDE |
| :---: | :---: |

