CALCULUS 12 FINAL MOCK B (2024)

MARKS: Part 1 - MC / 22		Name
Part 2 – WS / 53	75	Date
	15	

PART 1: Multiple Choice Section:

Fill in the **Scan Tron Sheet** with the best answer. Show your work clearly for each question below. Answers may be affected if not done so.

1.

Given
$$f(x) = \frac{5}{x^2}$$
 determine $f'(x)$
A. $-\frac{10}{x}$ B. $-\frac{10}{x^3}$ C. $\frac{3}{x^3}$ D. $\frac{5}{2x}$ E. none of these
2.
Evaluate the derivative of the function $f(x) = 3x^2 - 2x - 1$ at the point where $x = 0$
A. -2 B. -1 C. $\frac{1}{3}$ D. 1 E. none of these
3.
Find all values of x such that the function $f(x) = 2x^3 - 3x^2$ is increasing
A. $x < 1$ B. $x > 0$ C. $0 < x < 1$ D. $x < 0$ or $x > 1$
At which of the following values of x is the function $g(x) = x^3 - 4x^2$ decreasing ?
A. $x = -3$ B. $x = -1$ C. $x = 2$ D. $x = 4$ E. none of these
5.
Find the minimum value of the function $f(x) = 2x^2 - 12x + 6$

C. 3

D. 6

B. –12

A. –24

E. none of these

6.

Find the slope of the line tangent to the graph of $y = x^3 - 4x^2 + 2$ at the point where x = 2A. -10 B. -6 C. -4 D. -2 E. none of these

7.

8.

The graph of f is shown in the diagram and f is twice differentiable. Which of the following has the smallest value ? I. f(-1)II. f'(-1)III. f''(-1)A. I only B. II only C. III only D. I and II E. II and III

9.

If
$$y = x^2 e^x$$
 then $\frac{dy}{dx} =$
A. $2xe^x$ B. $x(x+2e^x)$ C. $xe^x(x+2)$ D. $2x+e^x$ E. $2x+e^x$

10. If $xy^2 + 2xy = 8$ then at the point (1, 2) y' =A. $-\frac{5}{2}$ B. $-\frac{4}{3}$ C. -1 D. $-\frac{1}{2}$ E. 0 11. \cdot A function f(x) exists such that $f''(x) = (x-2)^2(x+1)$. How many points of inflection does f(x) have ?

Α.	none	В.	one	C.	two
D.	three	Ε.	cannot be determined		

12.

A particle moves along the x-axis according to the position function $x(t) = 2t^3 - 6t^2 + 9$ where x is in meters and t is in seconds. Find the value(s) of t when the particle is stationary. A. t = 0 B. t = 2 C. t = 0, t = -2 D. t = 0, t = 2 E. none of these

13.

A particle moves along a line according to the distance function $s(t) = 2t^3 - 21t^2 + 60t + 13$ During the time interval from t = 1 to t = 12, how many times does the paticle reverse its direction of movement?

A. 0 B. 1 C. 2 D. 3 E. 4

14.

Given
$$f(x) = \begin{cases} x+3 \text{ where } x < 0 \\ x-3 \text{ where } x \ge 0 \end{cases}$$
 then $\lim_{x \to 0^+} f(x) =$
A. -3 B. 0 C. 1 D. 3 E. does not exist

Given $f(x) = \begin{cases} e^x & \text{where } x < 1 \\ \ln x & \text{where } x \ge 1 \end{cases}$ then f(1) =E. does not exist A. 0 B. 1 C. 2 D. *e* 16. $\lim_{x\to 3}(x^2-2x+2) =$ E. none of these A. –8 B. 4 C. 5 D. 17 17. Find the product (9 + 8i)(5 - 5i)A) 85 – 5i B) 5 + 85 i

15.

C) 85 + 5 i

18. The next iterative value of the root of $x^2 + 2x - 4 = 0$ using the Newtons method, if the Initial guess is 1, is

D) $-40i^2 - 5i + 45$

A. 1.25 B. 1.067 C. 1.167 D. 1.001

19. A carpenter is building a rectangular room with a fixed perimeter of 100 feet. What is its maximum area?

A) 900 ft ²	B) 625 ft ²
C) 2500 ft ²	D) 1875 ft ²

The graph of a piecewise linear function f(x) is above. Evaluate $\int_{3}^{8} f'(x) dx$

(a) 2 (b)
$$-2$$
 (c) 5 (d) 0

21.

The function f is defined by $f(x) = 4x^2 - 5x + 1$. The application of the Mean Value Theorem to f on the interval 0 < x < 2 guarantees the existence of a value c, where 0 < c < 2 such that f'(c) =

22.

Solve the following differential equation. You can assume that x = 0 when y = 0.

$$3x^2y^2\frac{dx}{dy} = 4y^5$$

a)
$$x^3 = y^4$$
 b) $3x^3 = 4y^4$ c) $4x^4 = 4y^5$ d) $y^5 = 4x^2$

20.

PART 2: Written Response Section:

Show all steps clearly to receive full marks. Please CIRCLE YOUR FINAL ANSWER.

1. Differentiate (with respect to x) each function:

[1 mark each]

a) $f(x) = -3x^3 + 6x^{-2} - 1$ b) $y = 5e^{3x}$

c)
$$f(x) = 4sin(x^4 - 5x)$$
 d. $y = 2^{x^3}$

2. Related Rate Problems. Show all steps and diagram [3 marks]

You are inflating a spherical balloon at the rate of 7 cm³/sec. How fast is its radius increasing when the radius is 4 cm?

3. Find the antiderivative of each of the following functions: [3 marks]

a) $\int -6x^2 + 8x - 5 \, dx$

b) $\int 2x ln(3x^2) dx$

4. Find the **exact** value of each of the following definite integrals: [2 marks each]

a)
$$\int_{0}^{\pi} \cos x \, dx$$
 b) $\int_{-1}^{2} -e^{-x}$

5. Find the <u>exact</u> area between the curve $y = x^2 - 3x - 4$ and the *x*-axis over [3 marks] the interval $-2 \le x \le 4$

6. Find the **exact** area of the region bound between $y = 2x^2 + 10$ and y = 4x + 16.

[3 marks]

7. Evaluate each limit:

[3 marks]

8. Use the <u>definition</u> of the derivative to find $\frac{dy}{dx}$ for $y = 2x^2 + x$. [2 marks]

9. Make a rough sketch of the following function. Indicate x-intercepts, y-intercepts,

vertical and horizontal asymptotes: $y = \frac{2x-1}{x+3}$

[3 marks]

10. Use the second derivative test to find and classify all local extrema of :

$$y = \frac{4}{3}x^3 - 36x + 1$$

[2 marks]

11 a) Given the position-time graph [0, 4 seconds] below:

[2 marks

12. Solve the following equations **exactly** $2 \ln x = \ln(2x + 24)$. [2 marks]

13. Given
$$x^2 - \ln y = 0$$
, find $\frac{dy}{dx}$ at the point (1, e). [2 marks]

14. If
$$y = \sin(xy)$$
, find $\frac{dy}{dx}$ at the point $\left(1, \frac{\pi}{3}\right)$.

15. A man has 100 meters of fencing, a large yard, and a small dog. He wants to create a rectangular enclosure for his dog with the fencing that provides the maximum area. What dimensions provide the maximum area?

[3 marks]

[2 marks]

16. Use Newton's Method to solve the following equation $-x^3 - 3x + 13 = 0$ [3 marks] using x-initial value x = 2. Just do two iterations $x_3 =$

 $x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $x_{3} = x_{2} - \frac{f(x_{2})}{f'(x_{2})}$

- 17. Evaluate the following **IMPROPER INTEGRALS** and state if convergent or divergent: [2 marks]
 - $\int_{0}^{\infty} \frac{1}{x+2} dx$

18. Determine if the Mean Value Theorem applies to the function on the given interval. If it does, find the c-value. If it doesn't, explain why not.

[2 marks]

 $f(x) = x^2 - 2x$ [1,3]

19. Find the exact value of the following multiple $\int_{0}^{1} \int_{2}^{4} x \, dx \, dy$ integrals: [2 marks]

21. Solve the following equation over the **COMPLEX NUMBERS:** [2 marks] $2x^2 + 2x = 2x - 8$