
PRE-CALCULUS 11

Seminar Notes Learning Guide 10 & 11

RANCINS STATE OF STAT

Frances Kelsey Secondary School – 2019/20

Parts of a Radical

Topic 1

Example 1

Converting Mixed Radicals to **Entire Radicals**

Example of a Mixed Radicals $2\sqrt{5}$

Example of a Entire Radical

 $\sqrt{20}$

To convert mixed radical to entire radical:

Example: $2\sqrt{5}$

2. then multiply the 4 by the radicands $\sqrt{5}$

$$\sqrt{4 \times 5} = \sqrt{20}$$

Try:
$$a)$$
 $4\sqrt{3}$

b)
$$v^3\sqrt{v}$$

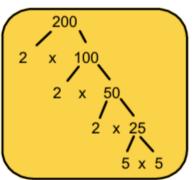
c)
$$2s^2\sqrt{3s}$$

d)
$$2x^2\sqrt[3]{4x}$$

Example 2 Radicals in Simplest Form

(Express Entire Radicals as Mixed Radicals)

Example: $\sqrt{200}$


1. Use Prime Factorization

$$\sqrt{2\cdot 2}\cdot 2\cdot \cancel{5\cdot 5}$$

Circle groups of 2's
 [because it's a Square Root]
 and put them out as coefficients

$$2 \cdot 5\sqrt{2} = 10\sqrt{2}$$

Do a Factor Tree

Try:

a)
$$\sqrt{52}$$

b)
$$\sqrt[4]{c^7}$$

c)
$$\sqrt[3]{864m^4n^5}$$

Example 3 Compare & Order Radicals

Order the following from least to greatest.

$$8\sqrt{3}$$
 $4(13)^{\frac{1}{2}}$ 14 $\sqrt{202}$ $10\sqrt{2}$

1st - Express each as an entire radical

 2^{nd} - Now, compare and order the radicands $\sqrt{192}$, $\sqrt{196}$, $\sqrt{200}$, $\sqrt{202}$, $\sqrt{208}$

Try: Order from least to greatest

$$5, 3\sqrt{3}, 2\sqrt{6}, \sqrt{23}$$

Example 4 Add & Subtract Radicals

Simplify and combine like terms.

a)
$$\sqrt{50} + 3\sqrt{2}$$

b)
$$\sqrt{72x} - \sqrt{18x}$$

 1^{s+} - Use your simplifying radical skills [see Example 2]

a)
$$\sqrt{50} + 3\sqrt{2}$$

$$= \sqrt{5 \cdot 5 \cdot 2} + 3\sqrt{2}$$

$$= 5\sqrt{2} + 3\sqrt{2}$$

$$= 8\sqrt{2}$$

a)
$$\sqrt{50} + 3\sqrt{2}$$

$$= \sqrt{5 \cdot 5 \cdot 2} + 3\sqrt{2}$$

$$= 5\sqrt{2} + 3\sqrt{2}$$

$$= 8\sqrt{2}$$
b) $\sqrt{72x} - \sqrt{18x}$

$$= \sqrt{6 \cdot 6 \cdot 2 \cdot x} - \sqrt{3 \cdot 3 \cdot 2 \cdot x}$$

$$= 6\sqrt{2x} - 3\sqrt{2x}$$

$$= 3\sqrt{2x}$$

Try: Simplify and combine like terms.

a)
$$-3\sqrt{24} + \sqrt{6}$$

b)
$$\sqrt{20x} - 3\sqrt{45x}$$

Topic 2

Example 1

Multiplying Radicals

Multiply, then simplify where possible.

a)
$$(2\sqrt{3})(-5\sqrt{6})$$

b)
$$(8\sqrt{2} - 5)(9\sqrt{5} + 6\sqrt{10})$$

1st - Use distributive property

$$2(-5)\sqrt{3\cdot 6}$$
$$-10\sqrt{18}$$

$$(8\sqrt{2} - 5)(9\sqrt{5} + 6\sqrt{10})$$

$$72\sqrt{10} + 48\sqrt{20} - 45\sqrt{5} - 30\sqrt{10}$$

2nd - Simplify the radicals

$$= -10\sqrt{3 \cdot 3 \cdot 2}$$
$$= -30\sqrt{2}$$

$$= 72\sqrt{10} + 48\sqrt{2 \cdot 2 \cdot 5} - 45\sqrt{5} - 30\sqrt{10}$$
$$= 72\sqrt{10} + 96\sqrt{5} - 45\sqrt{5} - 30\sqrt{10}$$

3rd - Collect like radicals

$$= -30\sqrt{2}$$

$$= 42\sqrt{10} + 51\sqrt{5}$$

Try: a) $7\sqrt{3}(5\sqrt{5}-6\sqrt{3})$

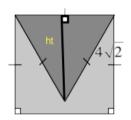
b)
$$9\sqrt[3]{2m}\left(\sqrt[3]{4m} + 7\sqrt[3]{28}\right)$$

c)
$$(4\sqrt{2} +3)(\sqrt{7} - 5\sqrt{14})$$

Example 2

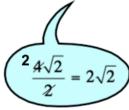
Apply Radical Multiplication

A equilateral triangle placed inside a square is shown below. The area of the square is 32 cm².



a) Find the exact perimeter of the triangle?

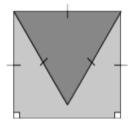
$$A = s^2$$
 Since the base of the triangle is a side of the square - we can use the Area of a Square formula. $A = s^2$


$$\sqrt{32} = s$$

$$\sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} \qquad \qquad \begin{array}{l} \text{Since all sides are the equal - we can now} \\ \text{multiply 3 by the side} \\ \Rightarrow \qquad 3 \left(4\sqrt{2} \right) = 12\sqrt{2} \ \ cm \end{array}$$

b) Find the exact height of the triangle?

- We need to use pythagorus theorem to find the height.
 - \rightarrow one side of the triangle is $4\sqrt{2}$
 - the base is half of the side so:



$$a = \sqrt{c^2 - b^2}$$

$$a = \sqrt{(4\sqrt{2})^2 - (2\sqrt{2})^2}$$

$$a = \sqrt{32 - 8}$$

$$a = \sqrt{24} \implies ht = 2\sqrt{6}$$

c) Find the exact area of the triangle?

• We now know the base is $4\sqrt{2}$ and the height is $2\sqrt{6}$. Use the formula:

$$A = \frac{b \cdot h}{2}$$

$$= \frac{\left(4\sqrt{2}\right)\left(2\sqrt{6}\right)}{2} = \frac{8\sqrt{12}}{2}$$

$$= 4\sqrt{12}$$

$$Area = 8\sqrt{3}$$

Try: An isosceles triangle has a base of $\sqrt{20}$ m. Each of the equal sides is $3\sqrt{7}$ m long. What is the exact area of the triangle?

Example 3

Divide Radicals

There are three types you'll will run into:

1. Divide

$$\frac{\sqrt{15m^3}}{\sqrt{5m}}$$
$$=\sqrt{3m^2}$$

2. Rationalize

$$= \frac{2\sqrt{6}}{4\sqrt{8}}$$

$$= \frac{2\sqrt{6}}{4\sqrt{8}} \left(\frac{\sqrt{8}}{\sqrt{8}}\right)$$

$$= \frac{2\sqrt{48}}{4\sqrt{64}}$$

$$= \frac{8\sqrt{3}}{32}$$

$$= \frac{\sqrt{3}}{4}$$

3. Conjugate

$$= \frac{3}{2\sqrt{2} - 5}$$

$$= \frac{3}{2\sqrt{2} - 5} \left(\frac{2\sqrt{2} + 5}{2\sqrt{2} + 5} \right)$$

$$= \frac{6\sqrt{2} + 15}{4\sqrt{4} + 10\sqrt{2} - 10\sqrt{2} - 25}$$

$$= \frac{6\sqrt{2} + 15}{-17}$$

$$= \frac{-6\sqrt{2} - 15}{17}$$

Try:

$$a) \ \frac{3\sqrt{24x^3}}{\sqrt{3x}}$$

b)
$$\frac{-6}{2\sqrt[3]{9}}$$

$$c) \ \frac{6}{\sqrt{4b} + 1}$$

LEARNING GUIDE 11

Topic 1

Example 1

Solve an Equation with One Radical

Solve algebraically $\sqrt{x+1} + 3 = 5$ - then check by graphing

1st - isolate the radical
$$\sqrt{x+1} = 5-3$$

$$\sqrt{x+1} = 5-3$$

$$\sqrt{x+1} = 2$$

$$2^{nd}$$
 - square both sides $(\sqrt{x+1})^2 = 2^2$

$$\left(\sqrt{x+1}\right)^2 = 2^2$$

$$x+1 = 4$$

$$x = 3$$

by substituting

$$x = 3$$
 into original equation

$$\sqrt{4} + 3 = 5$$

Try: *a*)
$$3 + \sqrt{3x+4} = 7$$

3rd - solve

b)
$$2\sqrt{x+6} = -4$$

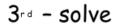
c)
$$-8 + \sqrt{\frac{3y}{5}} = -2$$

$$d) \quad r - \sqrt{5 - r} = -7$$

Topic 2

Example 2

Solve an Equation with Two Radicals


Solve $\sqrt{x+2} + \sqrt{3x-2} = 0$ - then check by graphing.


 1^{s+} isolate the radicals on each side of = sign

$$\sqrt{x+2} = -\sqrt{3x-2}$$

2nd - square both sides

$$\left(\sqrt{x+2}\right)^2 = \left(-\sqrt{3x-2}\right)^2$$
$$x+2 = 3x-2$$

2 does not check out - the solution is NO SOLUTION

Try:

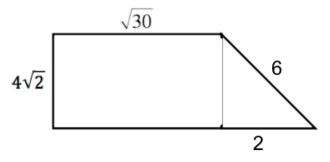
$$a) \quad \sqrt{2y-3} = \sqrt{y+1}$$

b)
$$\sqrt{19+6x} = \sqrt{2x-5}$$

c)
$$7 + \sqrt{3x} = \sqrt{5x+4} + 5$$
 d) $3\sqrt{x-2} = \sqrt{2x+3}$

d)
$$3\sqrt{x-2} = \sqrt{2x+3}$$

Solve by Graphing Calculator ONLY!



Some more difficult questions you will come across.

Find the perimeter:

Find the area:

