PRE-CALCULUS 11

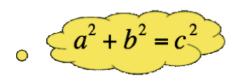
Seminar Notes Learning Guides 16 & 17

Frances Kelsey Secondary School – 2019/20

Trig. Review

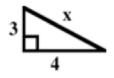
Basic Trigonometry

To find a side:



1. By Pythagorous

Example:



- 1. Write formula $a^2 + b^2 = c^2$ and substitute $3^2 + 4^2 = c^2$
- 2. Solve $9 + 16 = c^2$

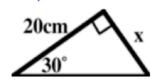
$$25 = c^2$$

$$\sqrt{25}$$
 = c

$$5 = c$$

2. By Trigonometry. •

Example:

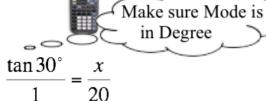


- Determine the correct ratio (sin, cos or tan) - here we use tan because we are using the opposite and adjacent sides.
- 2. Write out ratio:

$$\tan = \frac{opp}{adj}$$

3. Substitute:

$$\tan 30^\circ = \frac{x}{20}$$



4. Cross multiply to solve:

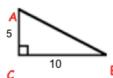
$$x = \tan 30^{\circ} \times 20 = 11.6 \text{ cm}$$

To find an Angle

SOH CAH TOA

1. By Trigonometry °

Example: Find angle B



1. Determine the correct ratio (sin, cos or tan) - here we use tan because we are using the opposite and adjacent sides.

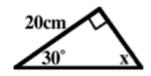
2. Write out ratio:
$$tan = \frac{opp}{adj}$$

3. Substitute:
$$x = \tan B = \frac{5}{10} = 0.5$$

4. Solve using
$$tan^{-1}$$
: $B = tan^{-1}(0.5) = 26.6^{\circ}$

2. Using the Sum of Angles in a Triangle

Example: Find angle x

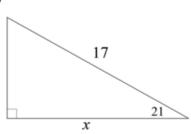


1. All 3 angles sum to 180°- we know 2 of the angles are 30° and 90°

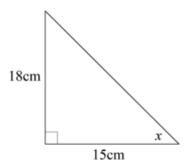
2.
$$x = 180 - 90 - 30 = 60^{\circ}$$

Try: Find the indicated side or angle

a)

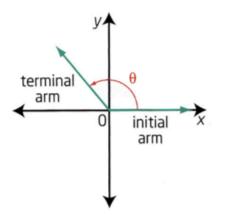


b)



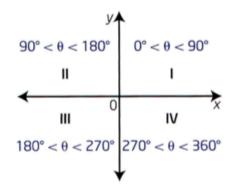
Topic 1

Angles in Standard Position



An angle is in standard position when:

- it's vertex is at the origin and
- the initial arm is on the positive x-axis
- *Angles in standard position are always measured counter-clockwise from the initial arm

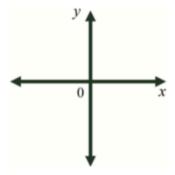


Angles in standard position are shown on the Cartesian plane. The x-axis and y-axis divide the plane into 4 quadrants

Example 1

Sketch an Angle in Standard Postion, $0^{\circ} \le \theta \le 360^{\circ}$

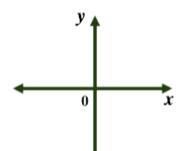
Example: a) 170°

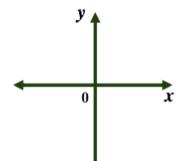


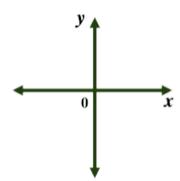
Try: Sketch each Angle in Standard Postion, and state the quadrant in which the terminal arm lies.

a) 37°

- b) 320°
- c) 245°



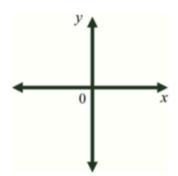




Example 1 - Part b

Directions: Are defined as a measure either east or west of north or south

Example: Show N40°W as an angle in standard position

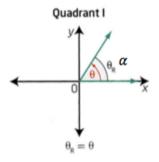


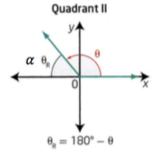
1. Start at North and go 40° toward west

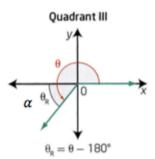
Reference Angles

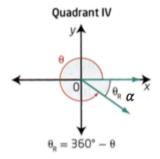
A Reference angle (θ_R) or α is:

- 1. the acute ($\leq 90^{\circ}$) angle between the terminal arm and the x-axis
- 2. always positive





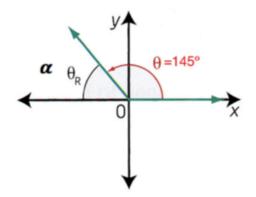




Example 2

Determine a Reference Angle

Example: $\theta = 145^{\circ}$



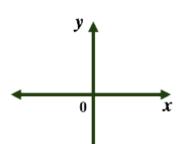
- 1. sketch angle
- 2. place the reference angle find the shortest distance back to the x-axis
- 3. calculate reference angle

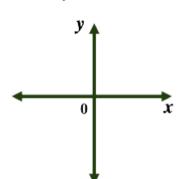
$$\theta_R = 180^{\circ} - \theta$$

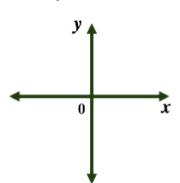
$$\theta_R = 180^{\circ} - 145^{\circ}$$

$$\theta_{R} = 35^{\circ}$$

Try: Determine the Reference Angle for each angle in standard postition



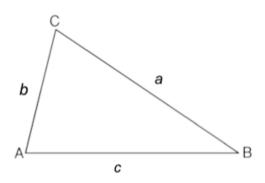




Topic 2

Sine Law

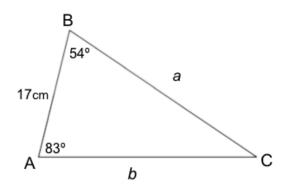
Sine Law is a relationship between the sides and angles of any triangle.



$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

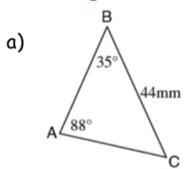
Determine an Unknown Side Length

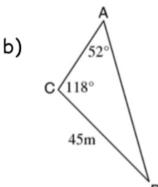
Example: Find the length of side b.



- Calculate ∠C
 ∠C = 180° 83° 54°
 ∠C = 43°
- 2. $\frac{\sin C}{c} = \frac{\sin B}{b}$ $\frac{\sin 43^{\circ}}{17} = \frac{\sin 54^{\circ}}{b}$ $b = \frac{\sin 54^{\circ} \times 17}{\sin 43^{\circ}} = 20.166...$ b = 20.2 cm

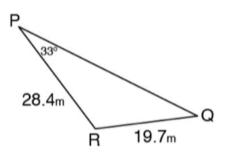
Try: Find the length of side c in each of the following triangles.





Determine an Unknown Angle Measure

Example: In ΔPQR , $\angle P=33^{\circ}$, $p=19.7_{\rm m}$, and $q=28.4_{\rm m}$. Find the measure of $\angle R$, to the nearest degree.



1. Find ∠Q using sine law

$$\frac{\sin 33^{\circ}}{19.7} = \frac{\sin Q}{28.4}$$

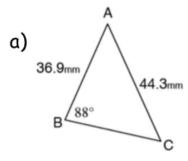
$$\sin Q = \frac{\sin 33^{\circ} \times 28.4}{19.7}$$

$$\angle Q = \sin^{-1} \left(\frac{\sin 33^{\circ} \times 28.4}{19.7}\right) = 51.73... \approx 52^{\circ}$$

2. Find $\angle R$ using sum of $\angle s$ in a triangle

$$\angle R = 180^{\circ} - 33^{\circ} - 54^{\circ} = 95^{\circ}$$

Try: Find the measure of $\angle A$, to the nearest degree, in each of the following triangles.



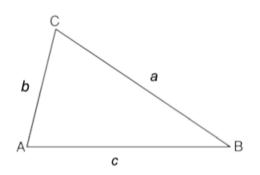
b) In $\triangle ABC$, $\angle B = 63^{\circ}$, b = 25.5 cm and c = 17.3 cm

LEARNING GUIDE 17

Topic 1

Cosine Law

Sine Law is the relationship between the cosine of an angle and the lengths of the three sides of any triangle.



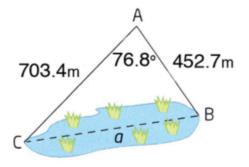
$$c^2 = a^2 + b^2 - 2bc \cos C$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Determine an Distance (Side Length)

Example: A surveyor measures the distance to one end of a lake as 703.4m. The distance to the other end is 452.7m and the angle between the two is 76.8°. Find the length of a lake.



- 1. Sketch a diagram
- 2. Use cosine law

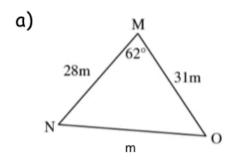
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$a^{2} = (703.4)^{2} + (452.7)^{2} - 2(703.4)(452.7)\cos 76.8^{\circ}$$

$$a^{2} = 554281.6894$$

$$a = \sqrt{554281.6894} = 744.5009... = 744.5m$$

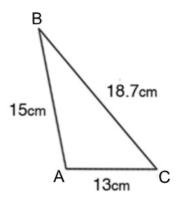
Try: Find the length of the indicated side in each of the following triangles, to the nearest tenth.



b) In $\triangle ABC$, $\angle B = 115^{\circ}$, a = 9cm and c = 8cm. Find b.

Determine an Angle

Example: A triangular brace has side lengths of 15cm, 18.7cm and 13cm. Find the measure of the angle opposite the 15cm side.



- 1. Sketch a diagram
- 2. Use cosine law

$$c^{2} = a^{2} + b^{2} - 2ab\cos C$$

$$(15)^{2} = (18.7)^{2} + (13)^{2} - 2(18.7)(13)\cos C$$

$$225 - 349.69 - 169 = -486.2\cos C$$

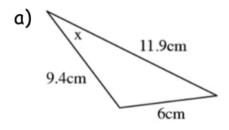
$$-293.69 = -486.2\cos C$$

$$\frac{-293.69}{-486.2} = \cos C$$

$$\cos^{-1}\left(\frac{-293.69}{-486.2}\right) = \angle C$$

$$53^{\circ} = \angle C$$

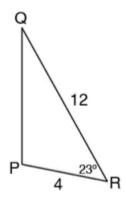
Try: Find the measure of the indicated angle in each of the following triangles, to the nearest tenth.



b) In $\triangle ABC$, a = 9m, b = 18m and c = 21m. Find $\angle A$.

Solve a Triangle

Example: In ΔPQR , p=12, q=4, and $\angle R=23^{\circ}$. Find the length of the unknown side and the measure of the other 2 angles.



- 1. Sketch a diagram
- 2. Use cosine law to find r

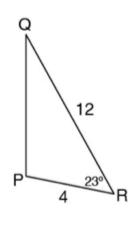
$$r^{2} = p^{2} + q^{2} - 2pq\cos R$$

$$r^{2} = 12^{2} + 4^{2} - 2(12)(4)\cos 23^{\circ}$$

$$r = \sqrt{71.6315...}$$

$$r = 8.46354...$$

3. Use cosine law to find $\angle P$



- 4. $p^2 = q^2 + r^2 2qr\cos P$ $(12)^2 = (4)^2 + (8.453)^2 - 2(4)(8.453)\cos P$ $144 - 16 - 71.631 = (-67.708)\cos P$ $\frac{56.368}{-67.708} = \cos P$ $\cos^{-1}\left(\frac{56.368}{-67.708}\right) = P$ $146.4^\circ = P$
- 5. Find $\angle Q$ using sum of \angle 's in a triangle

$$\angle Q = 180^{\circ} - 146.4^{\circ} - 23^{\circ}$$

 $\angle Q = 10.6^{\circ}$

Try: Solve the following triangles. Round your answers to the nearest tenth.



b) In $\triangle ABC$, a = 9, b = 7 and $\angle C = 33.6^{\circ}$

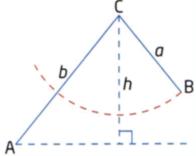
Topic 2

The Ambiguous Case

If you are given two sides and an angle opposite one of those sides (ASS), the ambiguous case may occur. There are 3 possibilities:

- 1. no triangle exists with the given measures NO SOLUTION
- 2. one triangle exists with the given measures 1 SOLUTION
- 3. two distinct triangles exist 2 SOLUTIONS

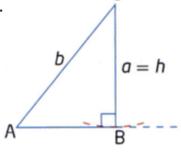
1.



a < h

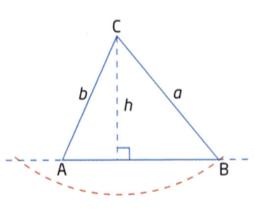
no solution - the sides don't meet

2.

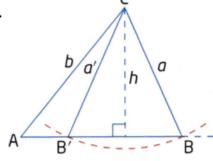


 $a=h \ or \ a \geq b$

one solution



3.



h < a < b

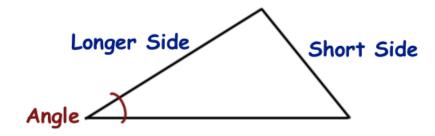
two solutions

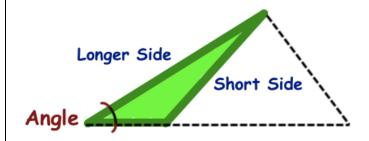
The Ambiguous Case

If you are given information that is an "ASS"

Angle (acute∠, Side, Side)

1st - Ambiguous Triangle Template:

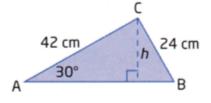




Example 3

Sine Law in an Ambiguous Case

Example: In $\triangle ABC$ $\angle A=30^{\circ}$, $a=24 \, \mathrm{cm}$, and $b=42 \, \mathrm{cm}$. Determine the measures of all other sides and angles



- 1. Sketch possible triangle
- 2. Find the height (h)

$$\sin A = \frac{h}{b}$$

 $h = b \sin A$
 $h = 42 \sin 30^{\circ}$
 $h = 21$
 $a > h$, so there are 2
possible triangles

Example 3 cont.

Triangle 1:

3. Solve for $\angle B$ using sine law

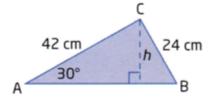
$$\frac{\sin B}{b} = \frac{SinA}{a}$$

$$\frac{\sin B}{42} = \frac{Sin30^{\circ}}{24}$$

$$\sin B = \frac{42Sin30^{\circ}}{24}$$

$$\angle B = \sin^{-1}\left(\frac{42Sin30^{\circ}}{24}\right)$$

$$\angle B = 61.044... = 61^{\circ}$$

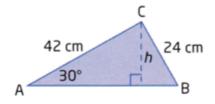


4. Find $\angle C$ (sum of angles in a Δ)

$$\angle C = 180^{\circ} - 61^{\circ} - 30^{\circ} = 89^{\circ}$$

5. Use sine law to find side c

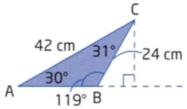
$$\frac{c}{\sin 89^{\circ}} = \frac{24}{\sin 30^{\circ}}$$
$$c = \frac{24 \sin 89^{\circ}}{\sin 30^{\circ}}$$
$$c = 47.992... = 48$$



Triangle 2:

1. Solve for $\angle B$ using 61° as the reference angle in quadrant II

$$\angle B = 180^{\circ} - 61^{\circ}$$
$$\angle B = 119^{\circ}$$



2. Find $\angle C$ (sum of angles in a Δ)

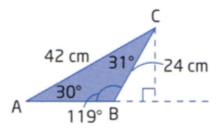
$$\angle C = 180^{\circ} - 119^{\circ} - 30^{\circ}$$

$$\angle C = 31^{\circ}$$

Example 3 cont.

3. Use sine law to find side c

$$\frac{c}{\sin 31^{\circ}} = \frac{24}{\sin 30^{\circ}}$$
$$c = \frac{24 \sin 31^{\circ}}{\sin 30^{\circ}}$$
$$c = 24.721... = 25$$



Try: In triangle ABC, $\angle A=21^{\circ}$, $a=12_{\rm m}$ and $b=17_{\rm m}$. Determine the measures of all other sides and angles

Topic 3

Bearings: True and Conventional

True Bearing:

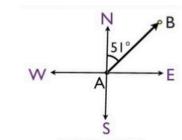
Is the direction to an object from a point measured clockwise from true north.

Example: Bearing of 030°

W 270° S 180

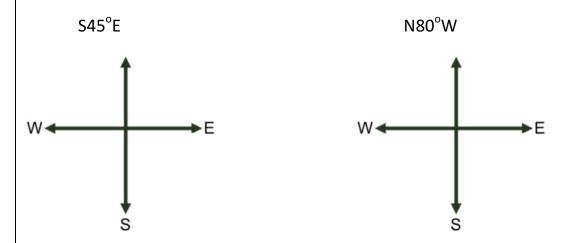
Conventional Bearing:

Is a direction point to an object stated as the number of degrees east or west of the north-south line.



Example: N 51°E

Try: Sketch each Conventional Bearing AND convert it into a True Bearing AND an angle in standard position.



Try: Sketch each True Bearing AND convert it into a Conventional Bearing AND an angle in standard position.

