

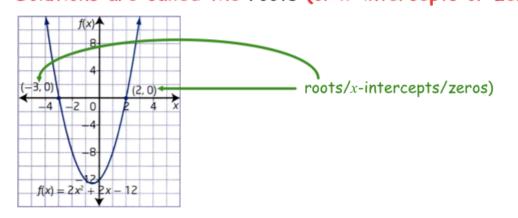
# Seminar Notes Learning Guides 7 & 8



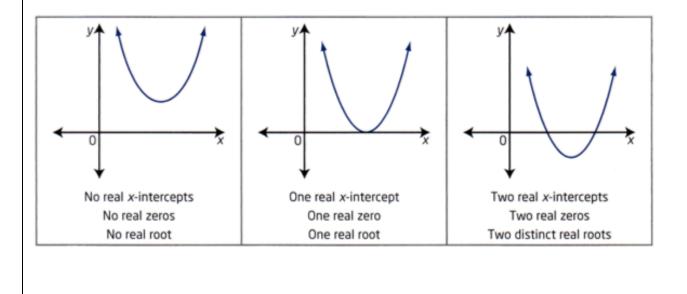
Frances Kelsey Secondary School – 2019/20

# Topic 1 Quadratic Equations

Quadratic equations of the form  $ax^2 + bx + c = 0$  can be solved by graphing the corresponding function,  $f(x) = ax^2 + bx + c$ . Solutions are called the roots (or x-intercepts or zeros)



Quadratic equations can have no solutions, one solution or two solutions.



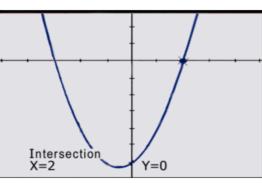
### Solving Quadratics by Graphing

**Example:** What are the roots of the equation  $2x^2 + 2x - 12 = 0$ 

- 1. Enter in the graphing calculator as  $y = 2x^2 + 2x 12$
- 2. Adjust window if necessary
- 3. Find one of the x-intercepts (2nd TRACE 5 and ENTER 3 times)
- 4. Find the 2nd x-intercept as above, but make sure you move the cursor to the other side of the vertex before pressing enter
- 5. The roots are (2, 0) and (-3,0)

### Check

1. Substitute x = 2 and x = -3 into the original equation



$$2x^{2} + 2x - 12 = 0$$

$$2(2)^{2} + 2(2) - 12 = 0$$

$$8 + 4 - 12 = 0$$

$$0 = 0$$
Both solutions are correct
$$0 = 0$$
Both correct
$$0 = 0$$

### Try: Determine the roots of each quadratic equation

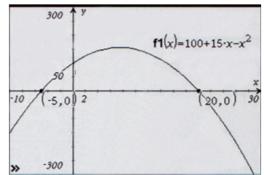
**a)** 
$$x^2 - 6x + 9 = 0$$
  
**b)**  $3x^2 - 7x + 6 = 0$ 

#### Solving a problem with Quadratics

**Example:** The manager of a clothing store is investigating the effect that raising or lowering dress prices has on the daily revenue from dress sales. The function  $R(x) = 100 + 15x - x^2$  gives the store's revenue R from dress sales, in dollars, where x is the price change in dollars. What price change will result in no revenue?

When there is no revenue, R(x) = 0. To answer the question, find the zeros.

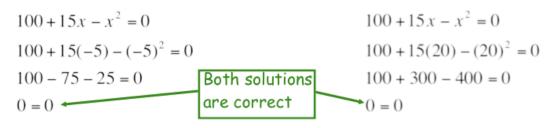
- Graph the equation. Adjust the window settings until you can see the vertex and the x-intercepts
- Use the trace function to find the x-intercepts



3. The roots are (-5, 0) and (20,0)

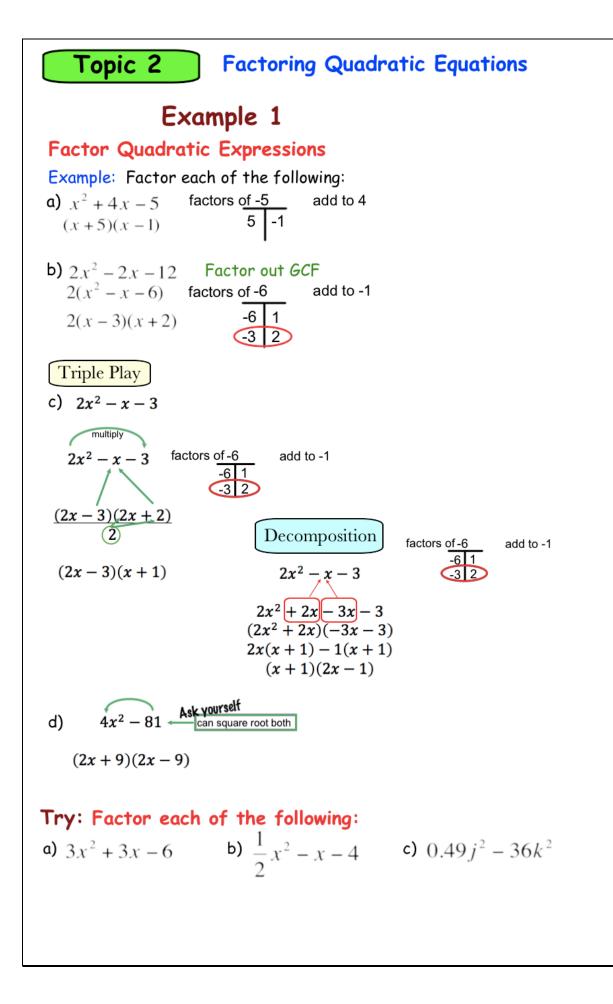
#### Check

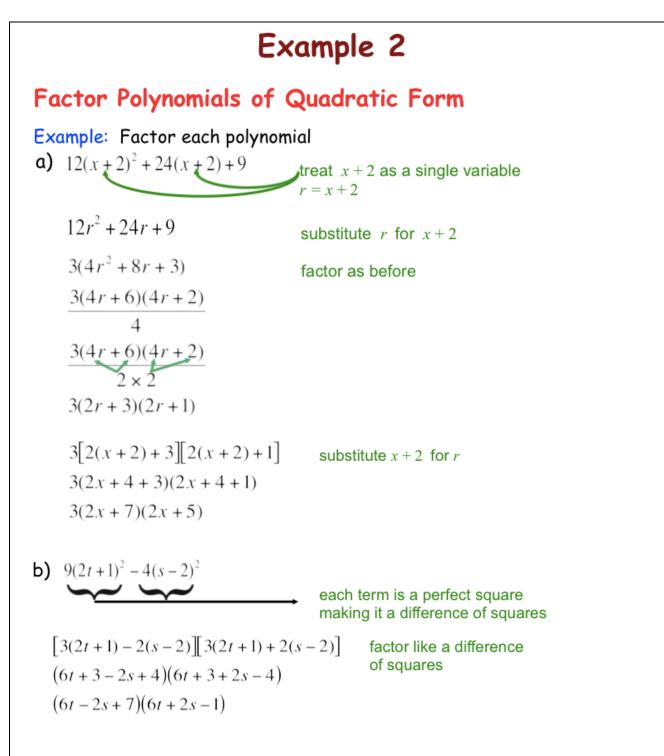
Substitute x = -5 and x = 20 into the original equation



A price decrease of \$5 or an increase of \$20 will both result in no revenue from dress sales

Try: The manager at Suzie's Fashions has determined that the function  $R(x) = 600 - 6x^2$  models the weekly revenue, R, in dollars from sweatshirts as the price changes, where x, is the price change, in dollars. What price change will result in no revenue?





#### Try: Factor each of the following:

a)  $-2(n+3)^2 + 12(n+3) + 14$ b)  $4(x-2)^2 - 0.25(y-4)^2$ 

#### Solve Quadratic Equations by Factoring

**Example:** Determine the roots of each quadratic equation. Verify your solutions.

a) 
$$x^2 + 6x + 9 = 0$$
 factor trinomial  
 $(x + 3)(x + 3) = 0$  for the quadratic equation to equal 0,  
 $x = -3$   $x = -3$  for the factors must equal 0

#### Check

Substitute x = -3 into the original equation

$$x^{2} + 6x + 9 = 0$$
  
(-3)<sup>2</sup> + 6(-3) + 9 = 0  
9 - 18 + 9 = 0  
0 = 0

b) 
$$2x^{2} - 9x - 5 = 0$$
  
 $\frac{(2x - 10)(2x + 1)}{2} = 0$   
 $(x - 5)(2x + 1) = 0$   
 $x - 5 = 0$  or  $2x + 1 = 0$   
 $x = 5$   $2x = -1$   
 $x = -\frac{1}{2}$ 

factor trinomial

for the quadratic equation to equal 0, one of the factors must equal 0

#### Check

Substitute x = 5 and x = -1/2 into the original equation

0

| $2x^2 - 9x - 5 = 0$     | $2x^2 - 9x - 5 = 0$                                                 |
|-------------------------|---------------------------------------------------------------------|
| $2(5)^2 - 9(5) - 5 = 0$ | $2\left(-\frac{1}{2}\right)^2 - 9\left(-\frac{1}{2}\right) - 5 = 0$ |
| 50 - 45 - 5 = 0         | ( =/ ( =/                                                           |
| <b>0</b> = <b>0</b>     | $\frac{1}{2} + \frac{9}{2} - 5 = 0$                                 |
|                         | 0 = 0                                                               |

### Write a Quadratic Model Function

**Example:** A rectangle field has dimensions x + 4 and 3x - 10, where x is measured in metres. The area of the field is 4840 m<sup>2</sup>.

- a) Write a equation to model the situation.
- b) Solve for x.

# Example 5

### Write a Quadratic Model Function

Example: Two whole numbers that differ by 5. The sum of their squares is 53.

a) What are the two numbers.

# **LEARNING GUIDE 8**

Topic 1

### The Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The quadratic formula is used to find the roots of quadratic equations of the form  $ax^2 + bx + c = 0$ 

# Example 1

Use the Quadratic Formula to Solve Quadratic Equations

**Example:** Use the quadratic formula to solve  $9x^2 + 12x = -4$ 

- 1. Write  $9x^2 + 12x = -4$  in standard form,  $ax^2 + bx + c = 0$  $9x^2 + 12x + 4 = 0$  a = 9, b = 12, and c = 4
- 2. Substitute the values for a, b, and c into the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-12 \pm \sqrt{12^2 - 4(9)(4)}}{2(9)}$$

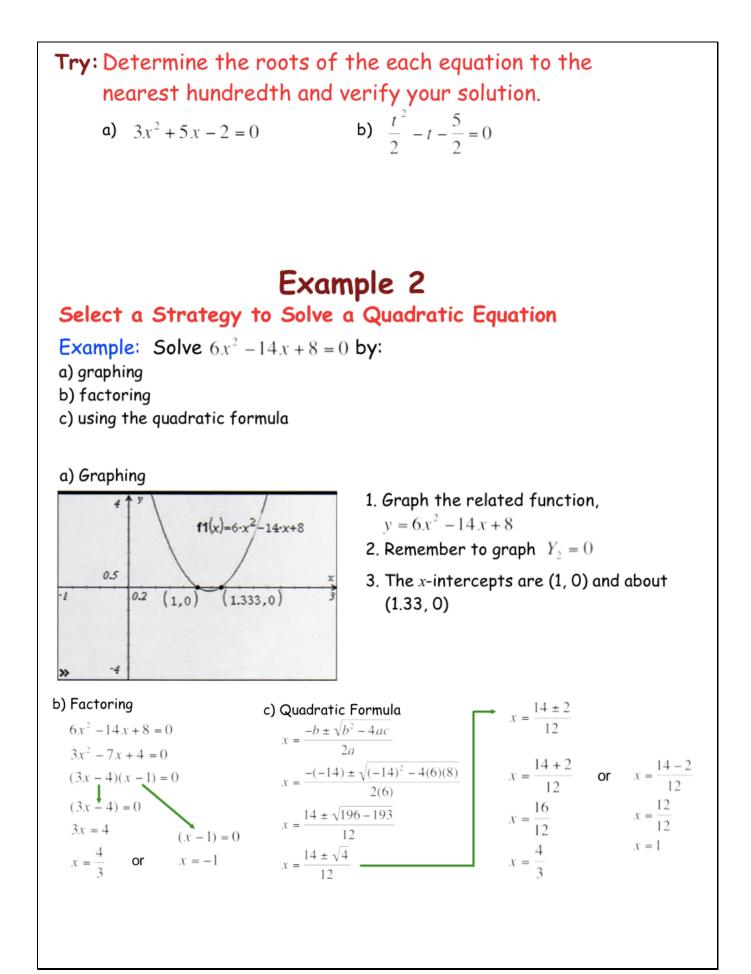
$$x = \frac{-12 \pm \sqrt{144 - 144}}{18}$$

$$x = \frac{-12 \pm \sqrt{0}}{18}$$

$$x = \frac{-12}{18}$$

$$x = -\frac{2}{3}$$

$$y = -\frac{2}{3}$$



### Topic 2

#### The Discriminant

The discriminant lets you determine the nature of the roots for a quadratic equations of the form  $ax^2 + bx + c = 0$ . It is the expression  $b^2 - 4ac$  which is under the radical sign in the quadratic formula.

 $b^2 - 4ac > 0$  2 distinct real roots  $b^2 - 4ac = 0$  2 equal real roots (one distinct real root)  $b^2 - 4ac < 0$  NO real roots

### Example 1

#### Use the Discriminant to Determine the nature of the Roots

**Example:** Determine the nature of the roots of  $-2x^2 + 3x + 8 = 0$ . Verify your answer with your calculator.

