Name _____

Worksheet #2 – Sine & Cosine Law

Solve the following equations for x. 1. $\frac{\sin(68^\circ)}{x} = \frac{\sin(37^\circ)}{3}$	2. $\frac{\sin(24^\circ)}{8} = \frac{\sin(x)}{3.75}$
<i>x</i> =	<i>x</i> =
3. $23^2 = 37^2 + 18^2 - 2(37)(18)\cos(x)$	4. $x^2 = 10^2 + 8^2 - 2(10)(8)\cos(60^\circ)$

x = _____

Find each measure using the given measures of ΔKLM .

5. In ΔKLM ; m = 10.5, k = 18.2, and $m \angle K = 73^{\circ}$. Find $m \angle M$.

∠*M* =_____

6. In ΔKLM ; $m \angle L = 88^\circ$, $m \angle K = 31^\circ$, and m = 5.4. Find l.

l =_____

7. In ΔKLM ; m = 11, l = 17, and $m \angle K = 59^{\circ}$. Find k.

k =_____

Name

Solve each triangle by finding all of the missing side lengths and angle measures..

11. Ms. Jenkins is buying some property that is shaped like quadrilateral *ABCD* below. Find the perimeter of the property.

Name_____

12. Sketch two different triangles such that: $a = 19, b = 25, A = 43^{\circ}$ and solve.

For questions 13 - 15 sketch and solve for <u>all</u> missing sides and angles in each triangle. Round to the nearest whole number

13. $\triangle XYZ$: $x = 29m, y = 15m, \angle Z = 122^{\circ}$

14. ΔGHI : g = 13cm, h = 8cm, i = 15cm

∠G = _____ ∠H = ____ ∠I = ____

Name

15. ΔMNO : $n = 31m, o = 28m, \angle M = 62^{\circ}$

∠N = _____ ∠O = ____ m = ____

16. A baseball infield is determined by a square with sides 90 ft long. Draw a diagram, home plate is *H* and first base is *F*. Suppose the first baseman ran in a straight line from *F* to catch a pop-up at *B*, 120 ft from home plate. If the measure of $\angle FHB$ is 10°, how far did the first baseman run?